
Networking Infrastructure for
Collaborative Laptop Improvisation

Greg Surges, University of Wisconsin-Milwaukee (gssurges@uwm.edu)
Christopher Burns, University of Wisconsin-Milwaukee (cburns@uwm.edu)

Abstract: We describe a network interface which enables the exchange of control data and
communications among laptop performers participating in ensemble improvisation. Design objectives
include simplicity, flexibility, and stylistic neutrality, supporting our vision of the network as a resource
for the transformation of musical data. Integrated functions include data request/exchange, autonomous
status reporting, and instant messaging. Our first software implementation runs in Pd, using the Open
Sound Control protocol, with additional implementations planned for other platforms. Implementations
are designed for ease of integration into existing software – critical for our target ensemble, MiLO (the
Milwaukee Laptop Orchestra), where each musician performs with their own custom software. The
complete protocol specification and the open-source implementation code are available online.

1 Introduction: the laptop ensemble
and musical networking
Laptop performance is now a ubiquitous practice
in contemporary music, and large ensembles of
laptop musicians are increasingly prevalent. All-
laptop ensembles are active at universities
including Carnegie Mellon, Cincinnati, the
Moscow State Conservatory, Princeton, and
Stanford, among other places [Dannenberg 07,
Kirn 07, Trueman 06, Trueman 07]. The Evan
Parker Electro-Acoustic Ensemble offers an
alternative model of organization, combining
instrumentalists and multiple laptop performers
in a large improvising ensemble.

Our group, the Milwaukee Laptop Orchestra
(MiLO), defines itself as a mixed ensemble of
instrumentalists and laptop performers, with
some musicians serving in both roles. MiLO
emphasizes interdisciplinarity, with filmmakers,
artists, and poets participating alongside
musicians, and with live visuals a regular feature
of performance. Most importantly, free
improvisation is the basic practice of the group,
with each laptop performer using the software
and musical approach of their own preference.

NRCI (Networked Resources for Collaborative
Improvisation) is a suite of software tools
designed for use by the members of MiLO.
NRCI serves an introductory and pedagogical
function for novice laptop performers, as a rapid
application development environment for
experienced users, and as a platform for research

in live coding and musical networking. This
paper describes the networking component of
NRCI, which facilitates the exchange of musical
control data and communications over local-area
wireless networks. Musical networking can
facilitate new forms of improvisation,
composition, and computation; our protocol and
implementations are intended to enable creative
experimentation in all of these areas.

2 Precedents
The network music created by the League of
Automatic Music Composers (1978-83) and the
Hub (1986-) represent an important context for
this work [Bischoff 85, Brown 02, Gresham-
Lancaster 98]. The League and the Hub both
exemplify the sustained and creative use of
network technologies to make music which
would otherwise be inconceivable. Chris Brown
describes the Hub's concerns: "the idea of having
musicians play with each other from distant
locations was... of considerable interest to
promoters, publicists, and audience.... But the
band itself was always for more interested in the
aspects of performer interactivity, algorithmic
complexity, and the web of mutual influence that
the network provided" [Brown 02]. Brian Kane
goes a step farther and argues that network
music is obligated to pursue the unique
possibilities facilitated by the network: "Any
aesthetics of Net music would, correspondingly,
imply a set of musical practices that exploit...
specific affordances of networks" [Kane 06].

Previous work with ensemble performance in
this area has mostly involved one-off protocols
and specific solutions. The Hub implemented its
second-generation compositions as series of
"hacks" on the MIDI protocol, using a standard
communications protocol in non-standard ways
[Brown 02]. The Carnegie Mellon Laptop
Orchestra opted to establish a unique networking
protocol specific to their December 2006
performance [Dannenberg 07]. Dan Trueman
describes reusable networking code as part of the
"PLOrk Utilities" library of Max/MSP
abstractions; most of the applications mentioned
refer to rhythmic synchronization or other forms
of coordination between a "conductor" laptop
and non-conductor "players" [Trueman 06]. The
TUIO protocol, like the PLOrk Utilities, uses
Open Sound Control, and has served as a useful
model for our work [Kaltenbrunner 05].

3.1 Design goals: the protocol
The NRCI network protocol is designed to
facilitate experimentation with network music in
the context of a laptop improvisation ensemble.
The protocol emphasizes the use of local-area
networks for distributed computing, as opposed
to the wide-area transmission of performance
data for telepresence. While wide-area
connections are possible with the NRCI
protocol, our interests align with those of Matt
Wright, who argues that "only when each
computer is doing something interesting does a
network of computers behave like a network of
computers instead of unreliable microphone
cables with built-in delay lines" [Wright 05].

Design objectives for the protocol include
simplicity, flexibility, universality, and
robustness. Simplicity implies ease of use, ease
of implementation, and common-sense design
concepts which can be grasped and used in the
heat of live performance. Flexibility suggests
that the protocol should make as few
assumptions as possible about the source and
generation of control data by the sender, or the
transformation and use of the data by the
receiver; ideally, the protocol should be
stylistically neutral. Universality implies
openness: the protocol should work on an many
software platforms as possible, with easy
integration of straightforward implementations.
Furthermore, the network protocol should invite

use by the ensemble, but not require that every
laptop performer provide network data (at least
in the context of free improvisation; network
compositions may be a different matter).
Robustness suggests the graceful handling of
errors and network dropouts, as well as the
economical use of available bandwidth.

Note that the protocol does not address the
networked exchange of audio. A number of
members of the ensemble have been working
with the live transformation of audio created
elsewhere around the group. However,
microphones, mixer aux send routings, and
submixes have proved sufficient for this purpose
to date, while sidestepping issues of latency,
technical complexity, and network bandwidth.

3.2 Design goals: the implementation
Our first implementation of the network protocol
was developed in the Pd environment [Puckette
96]. Pd was chosen for its familiarity, its open-
source ethos, its support of OSC and networking,
and because of MiLO's general preference for Pd
(a majority of the laptop performers in the group
use Pd at least some of the time in performance).

The primary goal for the Pd implementation is to
provide a working environment for the
development, testing, and validation of the
protocol. Another design goal concerns
simplicity and hackability - because each
member of the ensemble uses their own
software, and because we want to encourage
(rather than mandate) widespread adoption of
networking within the group, the network
interface needs to be as easy to integrate into
existing and new software instrument designs as
possible. A third objective concerns the larger
NRCI project; the networking code should be
seamlessly integrated into the larger NRCI
toolset, so that a performer choosing to use
NRCI in performance gets networking "for free."
Finally, we have tried to minimize the number of
external libraries required by the networking
code, in order to maximize the longevity and
maintainability of the implementation.

4 The Protocol
NRCI uses a star network topology, in which all
data is broadcast across the entire network via a

central 802.11g wireless router. There is no
central server, and all computers on the network
are treated as equal peers. If any one performer
experiences a crash, the rest of the performers
can still take full advantage of the network.
While the router still represents a single point of
failure, to date we've had no issues with the
reliability of installed routers at various testing,
rehearsal and performance locations.

NRCI networking is built on top of the OSC
network protocol. OSC provides much more
flexibility than MIDI, including natural-language
messaging, is widely available in computer
music and art software systems, including Pd,
Processing, Isadora, SuperCollider, and Max,
and runs natively over modern networks. Each
user directs outgoing OSC messages to
255.255.255.255 - a standard IP address for
broadcasting to an entire local-area network. All
messages are sent and received on port 9999,
and OSC messages are transported across the
network using UDP as the underlying protocol.

OSC messages follow a simple hierarchical
addressing format. In our protocol, messages are
generally formatted:
/receiver/sender/message-type arguments
and can also be broadcast:
/all/sender/message-type arguments
Standardized usernames are required to describe
network peers (senders and receivers). MiLO
currently uses first names in all lowercase
characters, to encourage informality and a non-
hierarchical relationship between performers.

The protocol allows for transmission of control-
rate data streams from one performer to one or
more other performers. Two types of
communication are supported: requests (control
data exchange driven by the receiver) and
commands (exchange driven by the sender). The
request protocol targets on-the-fly use in
unscripted improvisation, while the command
protocol targets more compositionally structured
or otherwise preplanned situations.

4.1 Request-based control data
With the request method, one performer sends a
message to another indicating a request for a
data stream. Requesters indicate when a stream
is wanted, and when it is no longer desired.

Upon receipt of a request, the requestee begins
to broadcast the desired data. An OSC message
requesting a data stream is formatted:
/receiver/sender/data-type-request on/off-tag
and a message broadcasting data is formatted:
/all/sender/data-type value

In the event that multiple users request the same
data stream from a given performer, they simply
"tune in" to the existing broadcast stream. (Non-
requesting receivers of the broadcast stream
discard the stream data). Senders track the
number of active requests for a given data-type;
when no active requests remain, broadcasting
ceases. This method minimizes redundant
network traffic within the broadcast approach.

The available stream data types are pitch,
amplitude, duration, and rhythmic onset. Pitch is
represented by floating-point MIDI values
(facilitating both equal-tempered and microtonal
representations of pitch), amplitude as dB
values, durations as floating-point time values,
and rhythmic onsets as a stream of trigger
values. The corresponding data type names are
pitch-report, amp-report, duration-report, and
onset-report. Each time the sender's software
instrument determines that a new value is
appropriate, it is immediately broadcast to the
network, maintaining timing as accurately as
possible within the limits of computation and
network latency.

A specific request for pitch data is formatted as:
/chris/greg/pitch-request 1
(where the "1" represents "active request") and
an element in the corresponding data stream
broadcast would be formatted as:
/all/chris/pitch-report 78.7

While the flexibility of OSC would allow for
many more than four data types, the limitation of
the protocol has several virtues. First, arbitrary
software instruments are relatively likely to
implement processes that correspond to these
types. While pitch may not necessarily be a
meaningful component of a software instrument,
it is much closer to universality than "feedback
coefficient" or "modulation index." Second,
these types are perceptually "strong": they are
more likely to be clearly audible phenomena
than lower-level instrument parameter changes,

and this perceptual correlation suggests the use
of the network as a kind of unusually precise and
detail-oriented listening to one's improvising
colleagues. Finally, in the setting of improvised
performance, choice (and its associated interface
complexity) can be overwhelming. A simple and
limited number of options seems easier to
manage than an open-ended situation.

4.2 Command-based control data
The second method of data transmission,
commands, provides some of the flexibility
eschewed by the request system. While planning
a realization of Scot Gresham-Lancaster's
composition Stuck Note, originally designed for
the Hub, we realized that it was necessary for
senders to have the ability to specify a specific
target for a data stream [Brown 02]. The sender
specifies the receiver and a descriptive name for
the data stream, such as “brightness” or “filter
cutoff”. This allows for any type of numerical
data to be streamed from one performer to
another, though unlike the request protocol, it
requires coordination between sender and
receiver. Command messages are formatted:
/receiver/sender/command stream-name value

For instance, Stuck Note requires transmission of
two data types: amplitude and “x-factor” - a
timbral control. Rather than modifying their
locally-generated sound, musicians shape the
piece through amplitude and "x-factor" control
of other performer’s sounds. In our realization,
command messages were formatted as:
/chris/greg/command amplitude 35.3
/greg/chris/command x-factor 75.2

4.3 Instant messaging
The NRCI protocol also includes a chat system
for textual communication and coordination
during performance. Performers can evaluate
and discuss a performance in progress, and
group decisions about musical processes and
direction can be negotiated on-the-fly. This
system could also be used for various kinds of
extra-musical interaction between poets, artists,
and musicians or even between audience and
performers. Textual chat also provides the
opportunity for visual projection of intra-
ensemble communication, as used in Hub
performances of Vague Notions of Lost Textures

[Brown 02]. Currently, all chat is broadcast as
ASCII text:
/all/sender/chat text
For example:
/all/greg/chat lets bring it to a close here...

4.4 Status reporting/VU metering
Finally, the network protocol provides
instantaneous amplitude reports for networked
performers. The data is formatted as a floating-
point value in dB, and each performer broadcasts
an amplitude value every 100 ms. Amplitude
reports respond to one challenge of laptop
ensemble performance - the difficulty of
associating a particular performer with a
particular sound, gesture, or texture. Peak
metering provides an easily grasped way for
ensemble members to assess the activity of
specific musicians in the group. These messages
are formatted:
/all/sender/amp-status value
for example:
/all/chris/amp-status 64.3
We have also experimented with the broadcast
of time-averaged counts of discrete interface
actions by each performer; while an intriguing
concept, this information seems more difficult to
use in the heat of improvised performance.
Perhaps this idea can be revisited (via the
command protocol) as a compositional device.

5 Pd Implementation
The first implementation of the NRCI network
protocol is as a set of abstractions written in Pd,
using the OSCx and iemlib external libraries
found in the Pd-extended distribution. Each
performer initializes the networking code by
entering his or her username, after which
messages are dynamically created by inserting
the username into a generic template.

A GUI abstraction named request-handler
(figure 1) allows users to select and monitor their
data-stream requests. The interface is comprised
of a grid of mouse-selectable toggle boxes.
Usernames are arranged in a vertical row, and
the four request data-types are arranged in an
adjacent horizontal row. To the right is a
horizontal VU meter for each user. The VU
meter receives the instantaneous amplitude
reports broadcast by the corresponding user, and

provides a visual representation of the data.

figure 1: request-handler screenshot. From left to right, the
requestable data types are pitch, amplitude, duration, and

onset, with a VU meter to the right for each user.

A second Pd object, request-out, provides six
outputs for requested data (figure 2). From left to
right: the first two are unformatted “raw” data
and data parsed by username, while the last four
are pitch, amplitude, duration, and rhythmic
onset values from all currently requested
streams. The quick access to these parameters
facilitates adoption of the protocol and enables
live-coding. This data can be used in any way,
and cross-mapping of data-types is encouraged.
For example, incoming pitch data could be used
to control local amplitude, or incoming
amplitude could be used as an index into an
array of pitch values. The request-out object
keeps track of a user’s requested streams, and
parses out all other data.

figure 2: request-out screenshot. The four number boxes
display the data streams corresponding to the four rightmost
outlets.

Broadcast of requested data is accomplished by
transmit-handler. This object monitors incoming
OSC messages, and parses out requests for each
of the four possible data-types. Counters monitor
the number of active requests for each data-type,
and turn broadcasting for that type off when no
requests exist. Local audio processes (such as the
NRCI audio tools) communicate relevant control
data to transmit-handler through standard Pd
global send and receive objects; when broadcast

is active, transmit-handler converts the control
data values into OSC messages.

The command protocol is implemented using a
pair of Pd abstractions, command-send and
command-receive. Command-send takes
arguments specifying the recipient and data-type.
Each user can have an arbitrary number of
command-send objects active at a time,
streaming different data-types or sending to
different receivers. The receiver uses matching
command-receive objects, which take an
argument specifying the data-type to be
received. These objects can be created and
removed during performance, but users must
agree on naming conventions for data – in
advance of performance, through chat, or via
other means.

The chat module, ui-chat, receives on/off
messages from another object called key-
manager. Key-manager allows a user-specified
keystroke to toggle between various uses of
keyboard input. When chat is active, ui-chat
monitors ASCII keyboard input and creates text
strings which are broadcast with a press of the
enter key. Backspace is used to clear out one
entire line of text, before transmission. Received
chat messages are displayed in the main Pd
window, and overall the interface is similar to a
standard “chat-room” environment. Due to the
limited string processing capabilities in Pd, some
punctuation characters are currently unavailable.
Future plans for improvement include character-
by-character backspace.

6 Evaluation and Future Work
We tested the NRCI networking protocol in a
live public performance on December 6, 2007, at
the University of Wisconsin-Milwaukee. The
command protocol was used to support a
realization of Stuck Note (as described above),
the request protocol was used in several free
improvisations, and the chat and VU metering
features were used throughout the concert.
Networking functioned without interruption or
failure; in general, we have found the system to
be robust.

In performance, the request protocol facilitates
new kinds of interactive relationships among the
ensemble members, and the very precise kind of

"listening" it affords augments (rather than
replacing) traditional modes of listening.
Similarly, the chat and VU systems extend,
rather than usurp, traditional types of inter-
ensemble communication and attention. (This is
especially true since the instrumentalists in
MiLO don't participate in the chat system –
musical modes of improvisational negotiation
are still necessary in performance).

The command protocol is perhaps the least
explored to date, but we are confident that it will
facilitate novel kinds of musical thinking,
including new types of distributed responsibility
for ensemble behavior. We are very excited
about the use of networking in the context of
NRCI and MiLO, and look forward to more
work and experimentation with these tools.

Future work for this project centers around the
design of performances and compositions using
the NRCI network protocol. The work of the
Hub is both a model for this activity, and a
target: we intend to realize and perform several
more of the Hub's pieces using the NRCI tools.
Additionally, we intend to implement the
network protocol in other software platforms; a
Processing implementation is in progress, and a
SuperCollider implementation is planned.

Source code for NRCI (including the Pd
implementation of the network protocol) is
freely downloadable from:
http://ccrma.stanford.edu/~cburns/NRCI

Acknowledgements
Special thanks to the to the members of MiLO
for their enthusiastic support of this project.

References
[Bischoff 85] Bischoff, J., Gold, R., and Horton,
J.. "Music for an Interactive Network of
Microcomputers", in Foundations of Computer
Music, Roads, C., and Strawn, J., eds.
(Cambridge, Mass.: MIT Press), 1985.

[Brown 02] Brown, C., and Bischoff, J.
"Indigenous to the Net: Early Network Music
Bands in the San Francisco Bay Area",
http://crossfade.walkerart.org/brownbischoff/
(2002).

[Dannenberg 07] Dannenberg, R. "The Carnegie
Mellon Laptop Orchestra", Proceedings of the
International Computer Music Conference 2007.

[Gresham-Lancaster 98] Gresham-Lancaster, S.
"The Aesthetics and History of the Hub: the
Effects of Changing Technology on Network
Music", Leonardo Music Journal vol. 8 (1998).

[Kane 07] Kane, B. "Aesthetic Problems of Net
Music", Proceedings of the SPARK Festival
2007.

[Kaltenbrunner 05] Kaltenbrunner, M., et. al.
"TUIO: A Protocol for Table-Top Tangible User
Interfaces", Proceedings of the 6th International
Workshop on Gesture in Human-Computer
Interaction and Simulation, 2005.

[Kirn 07] Kirn, P. "Electronica Unplugged",
Keyboard Magazine,
http://www.keyboardmag.com/article/
electronica-unplugged/Jul-07/29770, 2007.

[Puckette 96] Puckette, M. "Pure Data",
Proceedings of the International Computer
Music Conference 1996.

[Trueman 06] Trueman, D., et. al. "PLOrk: the
Princeton Laptop Orchestra, Year 1",
Proceedings of the International Computer
Music Conference 2006.

[Trueman 07] Trueman, D. "Why a Laptop
Orchestra?", Organised Sound 12/2 (2007).

[Weinberg 05] Weinberg, G. "Interconnected
Musical Networks: Toward a Theoretical
Framework", Computer Music Journal 29/2
(2005).

[Wright 03] Wright, M., Freed, A., and Momeni,
A. "OpenSound Control: State of the Art 2003",
Proceedings of the Conference on Instruments
for New Musical Expression 2003.

[Wright 05] Wright, M. "Open Sound Control:
an Enabling Technology for Musical
Networking", Organised Sound 10/3 (2005).

