
NRCI: SOFTWARE TOOLS FOR LAPTOP ENSEMBLE

Christopher Burns and Greg Surges
University of Wisconsin-Milwaukee

Department of Music
{cburns, gssurges}@uwm.edu

ABSTRACT

NRCI is a suite of Pd tools designed to facilitate laptop
ensemble performance, and to foster a culture of group
music-making which emphasizes custom software
design and improvisational practice. NRCI provides a
large library of abstractions with a consistent interface;
these modules ease the challenge of instrument design
for novices, and aid in rapid development and live
coding for advanced users. NRCI also implements a
network protocol (using OSC) which provides for the
wireless exchange of control data and messaging in both
improvisational and pre-structured situations. NRCI is
designed for and tested by MiLO (the Milwaukee
Laptop Orchestra), and is freely available online.

1. INTRODUCTION: THE LAPTOP ENSEMBLE

The laptop orchestra is an idea of the moment in the
computer music community. Ensembles have recently
appeared at Carnegie Mellon, Cincinnati College of
Music, the Moscow Conservatory, and Stanford, among
other institutions; PLOrk is perhaps the best-
documented instance of the phenomenon right now [1].
Laptop ensembles are appealing as a pedagogical
opportunity, creating a focused learning community and
a "studio culture" at a time when electroacoustic music
is increasingly decentralized. They also offer
extraordinary creative opportunities; as Dan Trueman
notes, "simply imagining how [the laptop ensemble]
might work, what kind of music might be composed for
it, and what it would be like to play in is inspiring" [2].

Other recent trends in electroacoustic music-making
intersect neatly with the model of the laptop ensemble.
Improvisation and live coding practices fit naturally into
multiple-laptop performance, with each performer
pursuing independent activity [3, 4]. Interdisciplinary
practices also integrate well the laptop orchestra;
technology-oriented examples include motion capture
for dance, and computer-assisted visual performance
and projection. (Low-tech solutions like spoken word
and instrumental performance are equally effective).
And with ubiquitous wireless networking, network
music feels "native" to the laptop ensemble [5, 6, 7].

Our ensemble, the Milwaukee Laptop Orchestra
(MiLO), represents a particular perspective on these
phenomena. MiLO's fundamental practice is free
improvisation. Each performer brings their own
approach (including field recording, a variety of
synthesis aesthetics, and live processing of audio) and
their own tools (from cepstral.com and ElectroPlankton
through DJay and Digital Performer to SuperCollider
and Pd). Instrumental performance is welcome; one

member plays piano and saxophones exclusively, and
several double on wind instruments. Interdisciplinary
approaches are commonplace, with several members of
the group self-identifying as visual artists or filmmakers,
and video projections (including visuals made with
GEM, Isadora, Processing, and vvvv) are frequent in
performance. The group is non-hierarchical and
consensus-driven, combining students, faculty, and non-
university-affiliated members. This principle means that
MiLO has to be particularly mindful about creating and
maintaining a positive culture within the group.

MiLO is the initial target audience and testing group
for our new software, NRCI (Networked Resources for
Collaborative Improvisation). NRCI is designed to
support the group and its creative trajectory in several
ways, serving as a platform for experiment, as a learning
tool, and as a form of acculturation into the ensemble.

2. NRCI DESIGN OBJECTIVES

NRCI is intended to serve at least three distinct groups
within MiLO: novice members, advanced users, and the
NRCI developers (the authors of this paper). For new
members, NRCI is designed to facilitate rapid
integration and socialization into the ensemble. NRCI
provides both a friendly welcome to custom software
design for novice users, and near-instant gratification
which motivates more advanced learning and design.
Our intention is to maximize NRCI's creative potential
while emphasizing simplicity and ease-of-use.

For more experienced users, the NRCI library
facilitates rapid application development, providing
modular, reusable, and modifiable tools for a variety of
common tasks. These tools offer built-in networking
capabilities, so that participation in the NRCI network
protocol is "free" with the use of the library. For the
developers, NRCI serves as an experimental testbed; it
represents our initial forays into both live coding and
network music. NRCI's ease of use makes it a highly
hackable modular environment for on-the-fly coding,
while the networking functionality allows us to explore
the creative possibilities of network music in
improvisational and compositional contexts.

Finally, NRCI is in no way intended to be "the"
MiLO software. Each member of the group can decide
for themselves if, when, and how to use NRCI (though
some structured improvisational designs may require the
networking component). Accordingly, NRCI must invite
use to be a success in the context of the group. Because
Pd is the most widely used software in MiLO, it was an
obvious choice of platform for NRCI, and its open-
source nature fits nicely with our objectives [8]. NRCI is

intended to be as aesthetically open-ended as possible,
with a minimum of musical preconceptions.

3. THE NRCI LIBRARY

NRCI provides a library of interoperable abstractions,
all designed to facilitate the construction of software
instruments. There are five categories of abstractions:
interface elements, timing generators, control data
generators, audio generators, and audio processors. In
general, these abstractions are arranged in sequence -
timing generators drive control generators, which
provide parameter data for audio generators, which
provide input for audio processors, with interface
elements entering the chain at a variety of points (Figure
1). A large part of the NRCI workspace (the top-level Pd
patch provided with the code) is an empty canvas for
pre-performance or on-the-fly assembly of these
abstractions into custom instrument designs.

Figure 1. Possible I/O configurations of the abstraction types.

3.1. Library elements
User interface elements include keyboard, mouse, and
networking controls. There are two abstractions
facilitating keyboard input, ui-fretboard-number and ui-
fretboard-pitch. Inspired by the Lattice improvisation
instrument and the SMELT toolkit, these abstractions
treat the QWERTY keyboard as ordered rows or
columns of keys [9, 10]. The ui-fretboard-number
abstraction maps keyboard input to numeric output from
2.5 to 100; the ui-fretboard-pitch abstraction maps keys
to MIDI pitch values. A creation argument provides for
transpositions, and the fretboard abstractions can easily
be modified for other types of scales and mappings.

Where the keyboard abstractions each provide a
single data stream based on keypresses, the ui-mouse
abstraction provides three simultaneous data streams.
Two of these map the mouse pointer x- and y-axes to
data values between 0 and 100; a third outlet outputs a
bang message when the first mouse button is clicked.

The third category of user interface abstractions
provides access to the NRCI network interface. Net-
request-handler facilitates the request of control data
from other users on the network, and net-request-out
and net-command-receive import the resulting streams

of network data into the user's instrument. A fourth
abstraction, net-ui-chat, allows a user to send text
messages to other performers participating in a local-
area NRCI network. These objects are described in
greater depth elsewhere [11].

A variety of timing generators ("clocks") are
provided in the NRCI library. Deterministic strategies
include periodic interonset values, linearly or
geometrically increasing values (when an upper
threshold is crossed, the next time is reset to a lower
threshold), linearly/geometrically decreasing values, and
values oscillating around a specified center, with a user-
specified frequency and waveform (sinusoidal or
triangular). Stochastic strategies include random timing
values (from a variety of distributions), periodic values
with random shifts of interonset time, and randomly
shifting subdivisions of a periodic base tempo.

Control data generators ("knobs") are generally
similar to the "clocks". Deterministic strategies include
constant output, linear and geometric output (as with the
clocks), and sinusoidal and triangular oscillators.
Stochastic strategies include randomly chosen values
(again from a variety of distributions), "heap" (randomly
choosing one of a small number of randomly generated
values, with occasional substitutions of new values into
the collection), and "cycle" (cycling through a short
sequence of randomly generated values, with occasional
substitutions of new values into the sequence). Control
messages are generated "on demand" according to
timing messages; the control data output stream
maintains the inter-event timing of the "clock" input.

Audio generators ("synths") implemented to date
include sine and FM oscillators, Karplus-Strong plucked
string synthesis, pulse-train and pulsed-noise generators,
granular synthesis, a flute model, and sample playback.

The last category encompasses audio processing
abstractions ("sfx"). Amplitude modifiers include gating
and enveloping; modulation types include FM, ring
modulation, and feedback FM; filter categories include
all basic types as well as comb filtering with and
without random feedback variations; "effects" include
reverb, delay (with and without random feedback
variations), and waveshaping distortion. There are two
more idiosyncratic audio processing abstractions: sfx-
scrub~ sweeps non-linearly through a delayed input
signal, and sfx-feedback~ implements a simple feedback
network [12]. Finally, there are two output routings: sfx-
output~ streams data to the computer audio interface,
while sfx-record~ streams audio to a hard disk recorder.

3.2. Abstraction interfaces
The relationships between library elements are tightly
controlled, to ensure ease-of-use especially for novices
and in live coding situations. All clocks output timed
sequences of bangs. All knobs receive a clock input, and
output one control data stream, with values between 0
and 100. (All UI elements except ui-fretboard-pitch also
output values between 0 and 100). This control data is
interpretable as pitch (in the floating-point microtonal
MIDI representation native to Pd), as a percentage (as in
feedback coefficients), or as arbitrary parameter data; all

control data inputs across the library (synths and sfx) are
set up to parse a 0-100 value. All synths take one control
input and provide one audio output; control data is
usually (though not always) interpreted as a frequency
parameter. And all sfx take one audio input and one
control input, and produce one audio output. (The
"output" subclass is exceptional, in that they receive
audio streams but don't output them). Because there are
a wide variety of signal processing algorithms
implemented in the sfx abstractions, input control data is
interpreted on a per-module basis.

While the interfaces between modules imply one-to-
one connections (for instance, from clock output to knob
input), many-to-one connections are also possible.
Multiple timing streams may be interleaved by
connecting them to a common (timing-aware) inlet. This
strategy allows for extremely complex rhythms, while
still maintaining the simplicity of the individual
abstractions. The same approach can be used with
control data and audio streams (audio streams are
mixed, rather than interleaved). Streams can also be
manipulated using standard Pd objects and techniques;
as always, the complete functionality of Pd is available.

Figure 2. Example configuration of library elements.
NRCI abstractions are designed to appear and

behave consistently according to their category (Figure
2). Timing generators have one inlet (an on/off switch),
one outlet (a stream of bang messages representing
timing events), and one graph-on-parent interface
element (an on/off switch). Control data generators have
one inlet (a stream of timing messages), one outlet (a
stream of numeric values), and one interface element
(display of the most recent output). Audio generators
have two inlets (a stream of control values, and an
on/off switch), one outlet (an audio stream), and one
interface element (an on/off switch). Audio processors
have two inlets (one for audio input, and one for a
control data stream), one outlet (the processed audio
stream), and one interface element (an on/off switch).
The only exceptions are synth-playback~, synth-grain~
and sfx-record~, which have a "choose soundfiles"
button, and sfx-output~, which adds a volume control.

NRCI abstractions expose additional functionality
through creation arguments. Most abstractions can be
assigned to switch on and off via a user-specified

hotkey. Other creation-time parameters are specific to
the particular abstraction; for example, sfx-combfilter~
exposes control of feedback coefficent. Each abstraction
includes comments describing all available inlets,
outlets, and creation arguments. While the number of
abstractions makes memorization of creation arguments
challenging, the documentation mitigates this issue.

Interface consistency extends to the NRCI network
implementation. All clock objects report duration and
onset data to the networking module for broadcast;
similarly, all synth and sfx abstractions which interpret
control input as pitch (oscillators, filter frequencies, etc.)
report pitch data. The sfx-output~ module passes audio
output to an RMS calculation, which then passes
amplitude data to the network module. Every NRCI user
connected to a local NRCI network provides data to the
network "request" protocol (described below) without
any additional user action or coding.

4. THE NRCI NETWORK PROTOCOL

NRCI supports network music applications using a
protocol implemented in Open Sound Control over UDP
[13]. The network uses an all-client, broadcast design,
with a central (802.11g wireless) router but no server.

The NRCI protocol provides four discrete sets of
functionality. The first is a request-driven system for the
exchange of control data. Performers can request
streams of pitch, amplitude, and rhythmic data from
other musicians on the network, and the requested data
is automatically provided by NRCI, without any action
on the part of the data provider. The interface is
designed to encourage transformation of this data (rather
than simple re-use), and this part of the protocol targets
free improvisation and live coding.

The second system is similar to the first, but is
controlled by the transmitter rather than the receiver.
This "command" protocol benefits Hub-style network
compositions in particular. Where the request protocol is
limited to specific data types, the command protocol
leverages the flexibility of OSC to allow any kind of
data; however, message formats must be negotiated (in
advance, or on the fly) between sender and receiver.

The third set of functionality is a ensemble-wide VU
metering system; each laptop performer can visualize
the RMS amplitude of all group members. This system
helps the ensemble to manage the dissociation between
physical gesture and sound characteristic of laptop
music; the VU meters aid in identifying relationships
between performers and sounds.

Finally, the NRCI protocol provides a chat system,
for text communication, coordination, and introspection
between NRCI users during performance.

To increase the utility of the network protocol, we
have created an implementation in Processing; Jason
Nanna has contributed an implementation for vvvv. The
protocol is documented in greater detail in [11].

5. DOCUMENTATION

Documentation is a critical part of the NRCI project.
Comments facilitate the joint development of the code;

clearly and uniformly commented code is also a source
of assistance and "memory" while live-coding. Most
importantly, documentation advances the pedagogical
purposes of the project, demonstrating to new users how
the abstractions interconnect, how Pd code is written,
and how fundamental processes of digital audio work.

The NRCI user manual augments the documentation
of the code, providing initial instructions for setting up
Pd, running the code, and establishing a username for
networking. It offers a brief introduction to the function
of each abstraction in the library, and explains the
connection paradigms between the types of abstractions.
The manual serves to guide new members of MiLO, and
to reinforce the culture of the group.

6. EVALUATION AND FUTURE WORK

MiLO has been working with beta versions of NRCI
since November 2007, with four public performances to
date. While assessment of the project is necessarily
subjective, we feel that our key design goals were
successfully realized. The fulcrum point of the project is
the balance of simplicity and flexibility; while NRCI is
not appropriate for every purpose, we feel that it invites
participation and experimentation.

Newcomers to MiLO, to Pd, and to software design
are able to use NRCI with a minimum of coaching. The
most vivid example of NRCI's approachability comes
from an April 2008 workshop at Lawrence University;
with less than an hour of demonstration and hands-on
exploration, ten undergraduates (who had never used Pd
before) were all joyfully creating NRCI instruments and
improvising together.

More advanced users in MiLO have been eager to
take advantage of the NRCI features. While MiLO will
undoubtedly continue to use a variety of software, NRCI
has seen substantial use in our latest performances, and
there has been a surge of plans for new NRCI-based
structured improvisations from within the group. The
authors have worked extensively with NRCI live coding
in rehearsal and performance. Our subjective experience
is that the simplicity and consistency of the NRCI
library (coupled with the full expressive range of Pd)
maps well to facile and flexible live coding.

We have evaluated the network protocol in part by
recreating and performing classic Hub compositions
using NRCI. MiLO has performed Vague Notions of
Lost Textures and Stuck Note (both by Scot Gresham-
Lancaster), stressing and demonstrating the value of the
chat and command protocols in particular. The request
protocol has seen use primarily in free improvisation,
where it facilitates types of pitch and rhythmic relation
unusual to laptop improvisation. This system models a
kind of hyper-detailed listening, augmenting the
performer's mental model of the music in progress with
precise data about other users' activity. Finally, chat has
proven a fascinating augmentation of inter-ensemble
communication (though not a replacement for purely
musical means). In a long improvisation, chat can
facilitate complex processes of formal negotiation.
Several members of MiLO have found it worthwhile to

run Pd and NRCI in performance alongside other
applications, solely for access to the chat function!

The network protocol and modular design are now
stable; we expect that future releases of NRCI will
emphasize the addition of new abstractions to the
library, and improvements to the documentation.
Additional future work includes tools for the statistical
analysis of network traffic, additional implementations
of the network protocol, and new compositions and
improvisational specifications based on the software.

NRCI source code and documentation are freely
available from http://ccrma.stanford.edu/~cburns/NRCI.

7. REFERENCES

[1] Trueman, D., et. al. "PLOrk: the Princeton
Laptop Orchestra, Year 1'', ICMC Proceedings,
New Orleans, USA, 2006.

[2] Trueman, D. "Why A Laptop Orchestra?"
Organised Sound 12/2: 171-179.

[3] Collins, N. et. al. "Live Coding in Laptop
Performance", Organised Sound 8/3: 321-330.

[4] Wang, G., and Cook, P. "On-the-fly
Programming: Using Code as an Expressive
Musical Instrument", NIME Proceedings,
Hamamatsu, Japan, 2004.

[5] Brown, C., and Bischoff, J. "INDIGENOUS
TO THE NET: Early Network Music
Bands in the San Francisco Bay Area."
http://crossfade.walkerart.org/brownbischoff/
IndigenoustotheNetPrint.html

[6] Gresham-Lancaster, S. "The Aesthetics and
History of the Hub: The Effects of Changing
Technology on Network Music", Leonardo
Music Journal 8: 39-44.

[7] Kane, B. "Aesthetic Problems of Net Music",
Spark Proceedings, Minneapolis, USA, 2007.

[8] Puckette, M. "Pure Data", ICMC Proceedings,
Hong Kong, China, 1996.

[9] Burns, C. "Lattice: Strategies for and against
control in a laptop instrument", I C M C
Proceedings, Barcelona, Spain, 2005.

[10] Fiebrink, R. et. al. "Don't Forget the Laptop:
Using Native Input Capabilities for Expressive
Musical Control", NIME Proceedings, New
York, USA, 2007.

[11] Surges, G., and Burns, C. "Networking
Infrastructure for Collaborative Laptop
Improvisation", Spark Festival Proceedings,
Minneapolis, USA, 2008.

[12] Burns, C. "Emergent Behavior from
Idiosyncratic Feedback Networks", I C M C
Proceedings, Singapore, 2003.

[13] Wright, M. "Open Sound Control, an Enabling
Technology for Musical Networking",
Organised Sound 10/3: 193-200.

