
LATTICE: STRATEGIES FOR AND AGAINST CONTROL
IN AN IMPROVISATION INSTRUMENT

Christopher Burns
University of Wisconsin-Milwaukee

Department of Music
cburns@uwm.edu

ABSTRACT

Lattice is a laptop improvisation instrument designed to
balance user control with unpredictable behavior. The
operator triggers synthesis events, specifying their
timbre, and upper and lower boundaries on their
frequency and duration. The specific frequency envelope
and duration of the event are then algorithmically
determined, as are all other synthesis parameters relevant
to the chosen timbral type. The resulting tension
between performer control and algorithmic specification
leads to unfamiliar and interesting improvisational
situations. The implementation of Lattice also
responds to design goals including portability,
learnability, and expressive sound synthesis. This paper
describes the instrument and its implementation.

1. INTRODUCTION

As many authors have noted, the increasing power of
computer hardware and computer music software have
encouraged composers and performers to make use of
laptops for live electroacoustic performance [4]. My
personal interest in laptop performance comes from two
directions: first, an increasing awareness of and
connection to the San Francisco Bay Area improvisation
scene; and second, my experiences realizing and
performing live electroacoustic music of other
composers. As I heard others perform, I became
increasingly excited about the musical possibilities of
improvisation; the more I performed with electronics, I
increasingly understood the ways that electronic
instruments could expose the intellectual challenges of
performance, without making the technical demands of a
traditional instrumental education [3, 6].

The instrument under discussion, Lattice, is one of
an ongoing series of composerly responses to the
challenges of laptop performance and improvisation, and
the first which requires me to perform as a full-fledged
improviser, without the scaffold of another composer's
structure or aesthetic. Lattice makes little distinction
between composition and instrument; the software is
designed to shape and constrain improvisation, both as a
spur to the novice performer and as an embodiment of
particular compositional choices.

2. DESIGN GOALS

The most important design goal for the Lat t ice
instrument was to balance flexible and expressive
performer control with unpredictable behavior. This
balance reflects the instrument's intended use for
improvisation, and in particular a desire to disrupt habit
and cliché. Models for this approach to improvisation

include John Cage, who said, "I want to find ways of
discovering something you don't know at the time that
you improvise.... The first way is to play an instrument
over which you have no control, or less control than
usual", David Tudor, whose creative work centered on
inherently unstable feedback systems, and Luigi Nono,
whose La Lontananza Nostalgica Utopica Futura
constrains the electronics operator's improvisation inside
the boundaries of a prerecorded multichannel tape and a
violinist's performance [1, 9].

A second objective was to develop an expressive
sonic vocabulary using only synthesized timbres. While
the absence of samples increased the challenge involved
in producing interesting sounds, it enhanced the timbral
flexibility of the instrument, as the synthesis parameters
are continuously varied. Recording plays no role in the
instrument, but real sound was influential in the design;
the software was created during an artist's residency in
the Santa Cruz mountains of California, and a number of
the synthesis engines take some aspect of the soundscape
of my daily hikes as their model or jumping-off point.

The third major goal for the instrument was
learnability. This objective was approached in two ways:
first, the instrument was to enable fluid performance
without requiring the technical sophistication needed for
traditional acoustic instruments. The interface was to
facilitate the intellectual challenges and responsibilities
of improvisation, while minimizing any technical
learning curve. Second, the instrument was to use
similar or identical interface concepts across different
synthesis techniques. This reuse of interface concepts
allows the timbral vocabulary of Lattice to be expanded
or altered without significant changes to the interface,
and reduces the learning time for the instrument.

Additional design objectives included portability
and modularity. Lattice is hosted on a laptop, and no
additional equipment is required. It is easy to set up and
travel with, and can even be performed unplugged (albeit
quietly) through the laptop's built-in speakers. This
choice required a commitment to use the input devices
native to laptops. Software modularity facilitates both
development and maintenance of the code.

3. IMPLEMENTATION

Lattice is written in Miller Puckette's Pd language [7].
Pd facilitates rapid application development, is cross-
platform, and is free and open-source software.

3.1. Interface Design
Lattice uses the QWERTY keyboard of its host laptop as
the main device for user input. Two interface frames
are present; single keypresses initiate one set of
functions, while keypresses combined with the shift key

Figure 1. Screenshot of the Lattice software.

initiate a second set of functions. While these input
gestures may not be the most obviously musical, at least
they are familiar to anyone with typing experience.

The first interface frame (single keypresses without
the shift key or caps lock) organizes the keyboard as a
two-dimensional grid, with pitch register mapped from
top to bottom, and duration range from left to right. The
grid is organized in ten columns of four keys each, with
a variable timbre assigned to each column. The four keys
in each column trigger synthesis events of the column's
timbral type. They also specify the register of the event;
the topmost key in the column will produce higher
frequencies, the bottommost lower. The precise registers
assigned to the four keys vary somewhat from timbre to
timbre; typical values for the lowest register are 50-250
Hz, and for the highest 950-1950 Hz.

The columns of keys are organized according to their
upper and lower boundary on duration ("duration range");
the leftmost column produces synthesis events spanning
the shortest durations, while the rightmost column
produces the longest. As with register, the duration
ranges assigned to a particular column of keys can vary
from timbre to timbre; typical values are 0.2-0.3 seconds
for the shortest range, and 30-60 seconds for the longest.

Ten rows of radio buttons onscreen provide visual
information about the current assignments of timbres to
columns of keys (see Figure 1). Timbre assignments can
be changed using the trackpad to click different radio
buttons. Keys outside the 10 X 4 grid can also be used
to alter timbre assignments. The left and right arrow
keys navigate from column to column, while the up and
down arrow keys change the timbre assignment for the
current column. The minus and equals keys step back
and forth through a series of twenty-one presets, which
update the timbre assignments for all ten columns.
Finally, the delete key randomizes every assignment. As
the performer of Lattice I tend to favor the randomization

function, because it serves as part of the balance between
control (the performer requests a change to the current
assignments) and unpredictability (a stochastic algorithm
determines the actual new assignments).

The second interface frame (invoked by holding
down the shift key) lays out a similar two-dimensional
grid, now organized horizontally into rows. This frame
has fixed timbre assignments, with four timbres each
occupying half (five keys) of the top two ten-key rows.
Duration range is still mapped left-to-right, but the
ranges repeat with each half-row, so that e.g. the T and P
keys will produce similar durations with different
timbres. The synthesis techniques assigned to these keys
are not particularly amenable to pitch control, and so
registral information is not captured.

The third row from the top in this frame is similarly
divided in two; the fixed assignment here is not to a
synthesis technique but rather to percussion phrase
generators. (These phrase generators are discussed in
greater detail in section 3.2). The duration range implied
by the left-to-right layout of keys here applies to phrase
length, rather than synthesis event duration; a single
phrase will consist of many discrete synthesis events.
Seven unique percussive timbres occupy the seven
leftmost keys on the bottom row; the only user input to
these synthesis types is triggering, since neither registral
nor durational control is applicable. Three of these
timbral types are repeated on the <, >, and ? keys, so as
to fill out the complete 4 X 10 grid of the second frame.

A few additional controls (not particularly associated
with either frame) are available. The arrow keys can be
used to navigate not only the timbre assignments for the
key columns in the first interface frame, but also the
assignment of two post-processing techniques to specific
synthesis types. (The post-processing cannot be switched
off, only reassigned to different timbres). The arrow keys
also enable choices about the overall dynamics of the
instrument: the current state can be set to "loud,"
"mezzo," "soft", "unity <10sec," "unity <60sec," "zero

<10sec," and "zero <60sec". Independent time-varying
amplitude scaling for each synthesis type is derived from
these global states; the last four settings force all the
amplitude scalers to maximum or minimum within the
specified timeframe. Trackpad-only controls provide "set-
and-forget" options including a master on/off switch,
master volume, master reverb volume, start and reset
controls for a performance timer, and controls which
enable recording the instrument output to disk.

The interface also displays additional information
about the state of the instrument. Each synthesis type is
associated with a horizontal fader which displays the
current amplitude scaler for events of that type. Output
meters display the current output RMS volume. The
most recently invoked timbre preset (for interface frame
1), the current navigation column for the arrow keys, and
the current value of random walk parameters internal to
the instrument are also presented onscreen.

3.2. Control Algorithms
The perfomer triggers synthesis events, and in most
cases specifies duration range and register for those
events. All other parameters are determined
algorithmically, without user input. This is Lattice's
primary approach to the balance between performer
control and unpredictability; the user initiates events,
and the software determines the details of their
realization. The closest analogy is to percussion
performance, where a musician controls the attack of an
event, and the state of the drum determines its decay. In
Lattice the situation is more extreme: as if the size,
material, and construction of a drum were all fluctuating
continuously during performance!

As noted above, the actual duration of synthesis
events is not specified by the user, only the duration
range (expressed as an upper and lower boundary). Upon
triggering of an event, the software randomly generates
an actual duration from inside these boundaries. This
value is then propagated to additional parameter-
generating functions.

Most other synthesis parameters are governed by
random walks (a technique inspired by Xenakis'
GENDYN synthesis algorithm) [5, 8]. Random walks
determine both x and y values of parameter envelope
breakpoints connected by linear ramps. The upper and
lower boundaries for both dimensions of these random
walks are individual to each synthesis parameter, except
in the case of frequencies, where the upper and lower
boundaries are generally specified by the performer. Walk
durations are randomly chosen below a maximum
specified as a percentage of the event duration (sixty
percent is a typical upper bound). A final segment
exhausting the event duration is initiated in any case
where the duration remaining to the total event after the
latest walk segment falls below a fixed threshold. The
final parameter value may be fixed (as in amplitude
envelopes, which ramp to zero at their conclusion) or
randomly determined (as in frequency envelopes, which
may end anywhere in their available registral space).

The use of line-segment random walks means that
most parameter envelopes have complex shapes; single
synthesis events have independently evolving frequency,
amplitude, and spectral envelopes. The consistent

deployment of walks to generate envelopes across
synthesis types also means that this aspect of Lattice's
code can be extremely modular; reusable panning,
amplitude, and frequency walk modules each appear
dozens of times in the Lattice software.

Random walks are also deployed to generate
parameters which vary with each new event, rather than
continuously in time. These parameters include filter Q
(for the filtered noise synthesis), grain amplitude (for the
granular synthesis types), flanging parameters (for the
flanged noise synthesis), and most parameters for the
various types of click and percussion synthesis. As with
the continuously-varying random walk envelopes, these
random walks are generated using a single module of
code provided with parameters appropriate to the desired
range of output. (This module is also used inside each of
the random walk envelope modules).

A few additional synthesis parameters are governed
by simple random values rather than walks. Wavetables
for the pulse-train generators are loaded with five
randomly distributed fixed-amplitude pulses. Random
values also govern parameters of the highly simplified
GENDYN-style noise synthesis.

The final set of control algorithms pertain to the
percussive phrase generators. There are two different
types, "period" and "tuplet." The period module
generates a number of random values when triggered:
tempo (which ranges from 40-240 bpm), number of beats
per loop (11-31), number of variations per loop (2-6),
and the initial distribution of sounding beats. The initial
state of the loop is then sonified at the specified tempo
using the form of click/percussion synthesis associated
with the duration range chosen by the performer. With
each repeat of the loop (which continues until the overall
duration is exhausted) its contents are randomly varied.
If sounding beats are selected for variation they are
switched to silence; silent beats are toggled to sounding.
The result is a shifting pattern of pulses within a
consistent tempo; note that the performer has no control
over the sparsity or density of sounding beats, nor over
their evolution through time. As mentioned in section
3.1, there are five period modules, each associated with a
particular timbre and duration range. All five can be
activated simultaneously to create complex and
polytemporal rhythmic textures.

Similarly, there are five tuplet modules, each
associated with a duration range. These function
similarly to the period generators, but now every active
beat is given a periodic subdivision (from one to twelve
events per beat; the maximum allowable tempo is
correspondingly slowed to 120 bpm). As with the beats,
not all subdivisions are sounded; a threshold value is set
randomly for each new sounding beat, and each
subdivision is assigned a random value which must
exceed the threshold in order to trigger a synthesis event.
Like the period modules, all five tuplets can be active
simultaneously. Unlike the period modules, they can
switch between different percussive synthesis types. A
randomly chosen synthesis type is assigned to each
module at random durations between 3-13 seconds; the
same synthesis type may be chosen repeatedly, and for
more than one module simultaneously.

3.3. Synthesis techniques
Each of the synthesis types controlled by the first
interface frame have three polyphonic voices available.
Once all three voices are active, additional performer
requests for events of a given type are blocked and
discarded until one of the sounding events is completed.
A variety of synthesis methods are available in this
interface frame, including pulse-train synthesis, comb-
filtered pulse-trains, frequency modulation synthesis (in
versions with one and three modulators, with and
without comb filtering), comb-filtered three modulator
FM with an additional quartic waveshaping stage at the
output, two flavors of granular synthesis with sinusoidal
waveforms (one texturally oriented, with rapid streams of
grains, the other gesturally oriented, with small isolated
sets of flanged grains), and comb-filtered, ring-
modulated noise. Two types of post-processing can be
applied to any of these synthesis methods. Both types
temporarily ramp the output volume to zero; the second
type also applies ring modulation during the transitions.
Reverberation is also applied to all synthesis outputs
after the final mixing stage.

The top two rows of the second interface frame host
four types of synthesis: a limited form of GENDYN
synthesis which uses random walks to define the output
waveform directly; a module which injects extremely
short burts of white noise into a flanger; and a pair of
waveguide-like feedback networks, with waveshaping
stages to compensate for deliberate gain mismatches and
idiosyncratic topologies [2]. One of these networks is
tuned to emphasize noisy textures, the other to produce
pitched timbres (with swooping glissandi as the delay
lines constituting the network continuously change in
length). The feedback networks are perhaps the
paradigmatic synthesis technique for the instrument,
since their behavior is particularly unpredictable; when
triggered they may produce anything from silence to
maximum volume across a noise-pitch continuum.

The phrase generators and the single percussive
events triggered by the bottom rows of the second
interface frame provide a catalog of different click
synthesis types, including noise-modulated FM, ring-
modulated noise, flanged noise, various configurations
of filtered noise, and low-frequency sinusoidal chirps.
While these techniques are all extremely simple, the
parameter alterations corresponding with each new event
subtly differentiate and enliven the timbres.

4. CONCLUSIONS

Experience performing with Lattice in solo, duo, and
ensemble contexts suggests that the design goals were
largely met in the implementation. There is a clear
balance and tension between performer control and
algorithmic behavior, with the software occasionally
disrupting the performer's intentions. The performer has
some ability to affect the amount of entropy (depending
on the use of randomized timbre assignments and
feedback networks). While the synthesis methods are
simple in technique, they are carefully tuned and
continuously variable, produce complex, grainy, and
expressive sound, and function well in combination with
acoustic instruments.

Lattice has proven easy to learn; in performance I
think about making music, rather than navigating the
interface. The consistent interface concepts have made it
easy to integrate new synthesis techniques, and the built-
in hard disk recorder facilitates rehearsal. The modular
design has also paid off: the "period" generator found a
second life in one of the granular synthesis types,
debugging has improved the random walk code across
the instrument, and the addition of randomization of the
timbre assignments was trivial thanks to the architecture.
Finally, the instrument is undeniably portable!

The current state of Lattice is only a step in a
continuing engagement with laptop improvisation; the
instrument can be extended with additional synthesis
techniques (and chording possibilities will provide
appropriate "space" in the interface). Lattice will also
serve as a springboard for future projects exploring other
relationships between control and unpredictability.

5. ACKNOWLEDGEMENTS

Thanks to the Djerassi Resident Artists Program for the
opportunity to create Lattice, and to Chris Jones, Matt
Ingalls, Dan Chudnov, and Steve Nelson-Raney.

6. REFERENCES

[1] Adams, J. D. S. “Giant oscillations: the birth
of Toneburst.” Musicworks 69, pp. 14-17,
1997.

[2] Burns, C. "Emergent Behavior from Idiosyncratic
Feedback Networks'', Proceedings of the
International Computer Music Conference,
Singapore, 2003.

[3] Chadabe, Joel. "Remarks on Computer Music
Culture." Computer Music Journal 24/4, pp.
9-11, 2000.

[4] Collins, Nick. "Generative Music and Laptop
Performance." Contemporary Music Review
22/4, pp. 67-79, 2003.

[5] Hoffmann, Peter. "The New GENDYN
Program." Computer Music Journal 24/2, pp.
31-38, 2000.

[6] Jordá, S. "Digital Instruments and Players: Part
II-Diversity, Freedom, and Control,"
Proceedings of the International Computer
Music Conference, Miami, 2004.

[7] Puckette, M. "Pure Data: another integrated
computer music environment," Proceedings of
the International Computer Music Conference,
Hong Kong, 1996.

[8] Xenakis, I. Formalized Music, rev. ed.
Pendragon Press, Hillsdale, New York, 1992.

[9] Zaparinuk, Peter. "David Tudor's Performance
Composition." Musicworks 71, pp. 47-51,
1998.

